

INTERMEDIATE ALGEBRA

Graphing Non-Linear Functions - Part 1
(Graphing Quadratic Functions)

Samuel Chukwuemeka (Samdom For Peace)

www. samuelchukwuemeka.com

NON=LINEAR FUNCTIONS
\square These are functions that are not linear.

- Their graph is not a straight line.
\odot The degree of these functions is not 1 .
\square Non-linear functions can be:
- Quadratic functions - a polynomial of degree 2
- Cubic functions - a polynomial of degree 3
- Other higher order functions
- Exponential functions
\bigcirc Logarithmic functions among others.

FOR THIS VIDEO,
\square We shall study the:
© Graphing of Quadratic Functions (Vertical Parabolas)
© The graph of a quadratic function is called a parabola
\square Parabolas can be:

- Vertical Parabolas - graphs of quadratic functions of the form: $y=a x^{2}+b x+c$ where $a \neq 0$
© Horizontal Parabolas - graphs of the quadratic functions of the form: $x=a y^{2}+b y+c$ where $a \neq 0$

SO, WHY STUDY PARABOLAS?

\square Have you ever wondered why the light beam from the headlights of cars and from torches is so strong?

- Parabolas have a special reflecting property. Hence, the are used in the design automobile headlights, torch headlights, telescopes, television and radio antennae, among others.

\square Why do the newest and most popular type of skis have parabolic cuts on both sides?
- Parabolic designs on skis will deform to a perfect arc, when under load. This shortens the turning area, and makes it much easier to turn the skis.

HAVE YOU ALSO NOTICED THAT:

- The shape of a water fountain is parabolic. It is a case of having the vertex as the greatest point on the parabola (in other words - maximum point).

© When you throw football or soccer or basketball, it bounces to the ground and bounces up, creating the shape of a parabola. In this case, the vertex is the lowest point on the parabola (in other words minimum point).
© There are several more, but let's move on.

VOCABULLARY TERMS

- Quadratic Functions
- Parabolas
- Vertical Parabolas
- Vertex
- Axis
- Line of Symmetry
- Vertical Shifts
- Horizontal Shifts
- Domain
\bigcirc Range

DEFINITIONS IN SIMPLE TERMS

- A quadratic function is a polynomial function of degree 2
- A parabola is the graph of a quadratic function
- A vertical parabola is the graph of a quadratic function of the form: $y=a x^{2}+b x+c$ where $a \neq 0$
- The vertex of a vertical parabola is the lowest point on the parabola (in the case of a minimum point) or the highest point on the parabola (in the case of a maximum point).
- The axis of a vertical parabola is the vertical line through the vertex of the parabola.
- The line of symmetry of a vertical parabola is the axis in which if the parabola is folded across that axis, the two halves will be the same.

DEFINITIONS CONTINUED

- Vertical Shifts is a situation where we can graph a particular parabola by the translation or shifting of some units up or down of the parabola, $\mathrm{y}=\mathrm{x}^{2}$
- Horizontal Shifts is a situation where we can graph a particular parabola by the translation or shifting of some units right or left of the parabola, $\mathrm{y}=\mathrm{x}^{2}$
- The domain of a quadratic function is the set of values of the independent variable (x-values or input values) for which the function is defined.
- The range of a quadratic function is the set of values of the dependent variable (y-values or output values) for which the function is defined.

AS YOU CAN RECALL,
○ $\mathrm{y}=\mathrm{f}(\mathrm{x})$ read as " y is a function of x "
$\odot y=a x^{2}+b x+c$ where $a \neq 0-$ This is a quadratic function of x. It is called the general form of a quadratic function. This is also written as:
○ $f(x)=a x^{2}+b x+c$ where $a \neq 0$
○ y is known as the dependent variable
© x is known as the independent variable
\square Bring it to "Statistics"

- y is known as the response variable
© x is known as the predictor or explanatory variable

TO GRAPH PARABOLAS,

- We can either:
© Draw a Table of Values for some input values (x-values) , and determine their corresponding output values (y -values). Then, we can sketch our values on a graph using a suitable scale. In this case, it is important to consider negative, zero, and positive x-values. This is necessary to observe the behavior of the graph.
- Use a Graphing Calculator to graph the quadratic function directly. Some graphing calculators will sketch the graph only; while some will sketch the graph, as well as provide a table of values.
\square For this presentation, we shall draw a Table of Values; and then use a Graphing Calculator.

LET US BEGIN WITH THE GRAPH:

$$
y=x^{2}
$$

- Let us draw a Table of Values for $\mathrm{y}=\mathrm{x}^{2}$
- It is necessary to consider negative, zero, and positive values of x

\mathbf{x}	\mathbf{y}
-2	4
-1	1
0	0
1	1
2	4

- Then, let us use a graphing calculator to sketch the graph and study it. Use the graphing calculator on my website.

Graphing Calculator

Equations Pettings

WE NOTICE THAT THE:

○ Vertex: (0,0); opens up; minimum value

- Axis: $x=0$
© Domain: $(-\infty, \infty)$ as x can be any real number
- Range: $[0, \infty)$ as y is always non-negative
* Let's deviate a bit: What is the difference between "non-negative" and "positive"?
\square Let's now illustrate vertical shifts by graphing these parabolas:
- $y=x^{2}+3$
- $y=x^{2}-3$
begin with a table of values

$\mathbf{y}=\mathbf{x}^{2}+\mathbf{3}$		$\mathbf{y}=\mathbf{x}^{2}-\mathbf{3}$	
x	y	x	y
-2	7	-2	1
-1	4	-1	-2
0	3	0	-3
1	4	1	-2
2	7	2	1

$\mathrm{y}=\mathrm{x}^{2}+\mathbf{3}$	$\mathrm{y}=\mathrm{x}^{2}-\mathbf{3}$
Vertex: $(0,3)$	Vertex: $(0,-3)$
Axis: $\mathrm{x}=0$	Axis: $\mathrm{x}=0$
Domain: $(-\infty, \infty)$	Domain: $(-\infty, \infty)$
Range: $[3, \infty)$	Range: $[-3, \infty)$

Graphing Calculator

THIS MEANS THAT FOR:

\square Vertical Shifts,

- The graph of $y=x^{2}+m$ is a parabola
- The graph has the same shape as the graph of $y=x^{2}$

○ The parabola is translated \boldsymbol{m} units up if $\mathrm{m}>0$; and $|\mathrm{m}|$ units down if $\mathrm{m}<0$

- The vertex of the parabola is $(0, m)$
- The axis of the parabola is: $x=0$
- The domain of the parabola is $(-\infty, \infty)$
- The range of the parabola is $[\mathrm{m}, \infty)$

HORIZONTAL SHIFTS

-Let us illustrate horizontal shifts by graphing these parabolas:
$\odot y=(x+3)^{2}$
$\odot y=(x-3)^{2}$
begin with a table of values

$\mathbf{y = (x + 3) ^ { 2 }}$		$y=(x-3)^{2}$	
x	y	x	y
-2	1	-2	25
-1	4	-1	16
0	9	0	9
1	16	1	4
2	25	2	1

$\mathrm{y}=(\mathrm{x}+3)^{2}$	$\mathrm{y}=(\mathrm{x}-3)^{2}$
Vertex: $(-3,0)$	Vertex: $(3,0)$
Axis: $\mathrm{x}=-3$	Axis: $\mathrm{x}=3$
Domain: $(-\infty, \infty)$	Domain: $(-\infty, \infty)$
Range: $[0, \infty)$	Range: $[0, \infty)$

Graphing Calculator

THIS MEANS THAT FOR:

\square Horizontal Shifts,

- The graph of $\mathrm{y}=(\mathrm{x}+\mathrm{n})^{2}$ is a parabola
- The graph has the same shape as the graph of $y=x^{2}$
- The parabola is translated \boldsymbol{n} units to the left if $n>0$; and |n| units to the right if $\mathrm{n}<0$
- The vertex of the parabola is (-n, 0)
- The axis of the parabola is: $x=-n$
- The domain of the parabola is $(-\infty, \infty)$
© The range of the parabola is $[0, \infty)$

YOU CAN ALSO HAVE IT THIS WAY:

\square Horizontal Shifts,
© The graph of $\mathrm{y}=(\mathrm{x}-\mathrm{n})^{2}$ is a parabola

- The graph has the same shape as the graph of $y=x^{2}$
- The parabola is translated \boldsymbol{n} units to the right if $\mathrm{n}>0$; and |n| units to the left if $\mathrm{n}<0$
© The vertex of the parabola is $(\mathrm{n}, 0)$
- The axis of the parabola is: $\mathrm{x}=\mathrm{n}$
- The domain of the parabola is $(-\infty, \infty)$
- The range of the parabola is $[0, \infty)$

CAN YOU TELL THESE MOVEMENTS?
\square From the graph of $y=x^{2}$;
$\odot y=(x+3)^{2}+3$: Move the graph of $x^{2} 3$ units to the left, then 3 units up
$\circ y=(x+3)^{2}-3$: Move the graph of $x^{2} 3$ units to the left, then 3 units down
$\odot y=(x-3)^{2}+3$: Move the graph of $x^{2} 3$ units to the right, then 3 units up
$\odot y=(x-3)^{2}-3$: Move the graph of $x^{2} 3$ units to the right, then 3 units down

HORIZONTAL AND VERTICAL SHIIFTS
aLet us illustrate horizontal and vertical shifts by graphing these parabolas:
๑y $=(x+3)^{2}-3$
$\odot y=(x-3)^{2}+3$

begin with a table of values

$\mathbf{y}=(\mathrm{x}+3)^{2}-\mathbf{3}$		$\mathbf{y}=(\mathrm{x}-\mathbf{3})^{\mathbf{2}+3}$	
\mathbf{x}	y	x	y
-2	-2	-2	28
-1	1	-1	19
0	6	0	12
1	13	1	7
2	22	2	4

$\mathrm{y}=(\mathrm{x}+3)^{2}-\mathbf{3}$	$\mathrm{y}=(\mathrm{x}-3)^{2}+\mathbf{3}$
Vertex: $(-3,-3)$	Vertex: $(3,3)$
Axis: $\mathrm{x}=-3$	Axis: $\mathrm{x}=3$
Domain: $(-\infty, \infty)$	Domain: $(-\infty, \infty)$
Range: $[-3, \infty)$	Range: $[3, \infty)$

\square

Graphing Calculator

Equations	Settings	Intersection	Plot Points		
®- \boldsymbol{y}_{1}	x^{2}			$\pi \sqrt{x} \sqrt{\pi}$	\bigcirc Deg
ar $y_{2}=$ar y_{3} :y_{4} :	$(x+3)^{2}-3$			$x^{2} x^{3}$	(Rad
	$(x-3)^{2}+3$			$-{ }^{\wedge} \sqrt{ }$	
					ZOOM OUT
	,	-		TRACE	\rangle
	$\$	-		X	y
	\rangle	-		-5	1
		-		-4	-2
	,			-3	-3
$1{ }^{1} 1$	1	\top	1 1 10	-2	-2
-10 -8	-6 -4	2	\bigcirc	-1	1
				0	6
				1	13
				2	22
				3	33
(-3-3)				4	46

THIS MEANS THAT FOR:

\square Horizontal and Vertical Shifts,
©The graph of $\mathrm{y}=(\mathrm{x}-\mathrm{n})^{2}+\mathrm{m}$ is a parabola
oThe graph has the same shape as the graph of $y=x^{2}$
oThe vertex of the parabola is (n, m)
oThe axis of the parabola is the vertical line: $\mathrm{x}=\mathrm{n}$

CAN WE USE ANOTHER METHOD TO FIND THE VERTEX AND THE AXIS?

\square We can use the "Completing the Square" method to find a formula for finding the vertex and axis of a vertical parabola (please view my video on
"Completing the Square" method)
\square For $\mathrm{y}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ where $\mathrm{a}=0$

- The vertex is $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$
and
- The axis is the line: $x=\frac{-b}{2 a}$

LET'S LOOK AT A FORMER EXAMPLE

\square Find the vertex and the axis of the parabola:

- $y=(x+3)^{2}-3$
- Expanding the term gives:
- $y=(x+3)(x+3)-3$
- $y=x^{2}+3 x+3 x+9-3$
© $y=x^{2}+6 x+6$. Compare to the form: $y=a x^{2}+b x+c$
\square This means that $\mathrm{a}=1, \mathrm{~b}=6$, and $\mathrm{c}=6$
- $\mathrm{x}=\frac{-b}{2 a}=\frac{-6}{2 * 1}=\frac{-6}{2}=-3$
- For $x=-3 ; y=(-3)^{2}+6(-3)+6$
- $y=9-18+6=-3$
- Therefore, the vertex is: $(-3,-3)$
\odot The axis is: $\mathrm{x}=-3$
\square It is important to note that:
- All parabolas do not open up
- All parabolas do not have the same shape as the graph of $y=x^{2}$
\square We have been looking at parabolas where the coefficient of x^{2} (which is " \boldsymbol{a} ") is positive. Do you think the graph may change if " a " was negative?
\square Let us graph these parabolas:
- $\mathrm{y}=-\mathrm{x}^{2}$ (Here, $\mathrm{a}=-1$)
- $y=-\frac{1}{2} x^{2}$ (Here, $a=-\frac{1}{2}$)
- $\mathrm{y}=-2 \mathrm{x}^{2}$ (Here, $\mathrm{a}=-2$)

AS USUAL, LETN'S BEGIN WITH A TABLE OF VALUES

$\mathrm{y}=-\mathrm{x}^{2}$		$y=-\frac{1}{2} x^{2}$		$\mathrm{y}=-2 x^{2}$	
x	y	x	y	x	y
-2	-4	-2	-2	-2	-8
-1	-1	-1	$-\frac{1}{2}$	-1	-2
0	0	0	0	0	0
1	-1	1	$-\frac{1}{2}$	1	-2
2	-4	2	-2	2	-8

WHAT DO WE NOTIICE?

$y=-x^{2}$		$y=-\frac{1}{2} x^{2}$		$y=-2 x^{2}$	
Vertex:	$(0,0)$	Vertex:	$(0,0)$	Vertex:	$(0,0)$
Axis:	$x=0$	Axis:	$x=0$	Axis:	$x=0$
Domain:	$(-\infty, \infty)$	Domain:	$(-\infty, \infty)$	Domain:	$(-\infty, \infty)$
Range:	$(-\infty, 0]$	Range:	$(-\infty, 0]$	Range:	$(-\infty, 0]$

Graphing Calculator

DO YOU KNOW THAT:

\square We shall notice the similar effect (but where the parabola opens up) with:
๑ $y=x^{2} ; y=\frac{1}{2} x^{2}$; and $y=2 x^{2}$
\square Do you want us to check it out?

SO, WE CAN SAY THAT:

- The graph of a parabola opens up if a is positive, and opens down if a is negative
© The graph is narrower than that of $y=x^{2}$ if $|a|>1$
- The graph is narrower than that of $y=-x^{2}$ if a <-1
\odot The graph is wider than that of $y=x^{2}$ if $0<|a|<1$
\odot The graph is wider than that of $y=-x^{2}$ if $-1<a<0$

LET US NOW LOOK AT THE GRAPHING OF
QUADRATIC FUNCTIIONS IN GENERAL
\square Recall that the general form of a quadratic function is:
$o y=a x^{2}+b x+c$ where $a=0$
\square Sometimes, you shall be asked to graph a function that is that form (not the kind of ones we have been doing).
\square What do you do?

THE STEPS ARE:

- Determine whether the graph opens up or down. (if $a>$ 0 , the parabola opens up; if $a<0$, the parabola opens down; if $a=0$, it is not a parabola. It is linear.)
© Find the vertex. You can use the vertex formula or the "Completing the Square" method
© Find the x - and y -intercepts. To find the x -intercept, put $\mathrm{y}=0$ and solve for x . to find the y -intercept, put $\mathrm{x}=0$ and solve for y. (You can use the discriminant to find the number of x-intercepts of a vertical parabola)
- Complete the graph by plotting the points. It is also necessary to find and plot additional points, using the symmetry about the axis.

USING THE DISCRIMINANT,

- Let us recall that the discriminant is:

$$
b^{2}-4 a c
$$

\square We can use the discriminant to find the number of x intercepts of a vertical parabola

- If the discriminant is positive; then the parabola has two x -intercepts
- If the discriminant is zero; then the parabola has only one x -intercept
- If the discriminant is negative; then the parabola has no x-intercepts.

LETUS DO AN EXAMPLE

\square Graph the function: $x^{2}+7 x+10$
\square Compare it to the general form: $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$

$$
\mathrm{a}=1 ; \mathrm{b}=7 ; \mathrm{c}=10
$$

© $1^{\text {st }}$ step: Since a >0; the graph opens up

- $2^{\text {nd }}$ step: Let us find the vertex using the vertex formula

○ $x=-\frac{b}{2 a}=-\frac{7}{2 * 1}=-\frac{7}{2}=-3.5$
$\odot y=f(x)=f(-3.5)=(-3.5)^{2}+7(-3.5)+10$
○ $\mathrm{y}=12.25-24.5+10=-2.25$
○ Vertex $=(-3.5,-2.25)$

LET US COMPLETE THE QUESTION
$\odot 3^{\text {rd }}$ step: the discriminant $=b^{2}-4 \mathrm{ac}$

- Discriminant $=7^{2}-4(1)(10)=49-40=4$
- Since the discriminant is positive, we have two xintercepts. Let us find them.
- Solve $\mathrm{x}^{2}+7 \mathrm{x}+10=0$
\odot Using the Factorization method (method of Factoring),
๑ We have that $x=-5$ or $x=-2$ (please view my video on the "Factoring")
- The x -intercepts are $(-5,0)$ and $(-2,0)$
- $\mathrm{f}(0)=0^{2}+7(0)+10=0+0+10=10$

๑ The y-intercept is: $(0,10)$

WE CAN FIND ADDITIONAL POINTS

- By drawing a Table of Values:

\mathbf{x}	\mathbf{y}
-2	0
-1	4
0	10
1	18
2	28

○ We can then sketch our graph!

- Let us see how this graph looks with a graphing calculator.

○ Thank you for listening! Have a great day!!!

Graphing Calculator

Graphing Calculator

