Differentiation using

 Product Rule and Quotient Rule

 Product Rule and Quotient Rule}

By

Samuel Chukwuemeka (Mr. C)

Quick Basic Facts

- In Calculus,
- If $y=f(x)$ read as y is a function of x
- y is known as the dependent variable
- x is known as the independent variable
- Similarly if $y=f(s)$ read as y is a function of s
- y is known as the dependent variable
- s is known as the independent variable

All these point to...Differentiation

- Assume $y=f(x)$
- Find y^{\prime}
- Find $\mathrm{f}^{\prime}(\mathrm{x})$
- Differentiate y wrt (with respect to) x
- Differentiate $f(x)$ wrt x
- Find the derivative of y wrt x
- Find the derivative of $f(x)$

Rules of Differentiation

$>$ Power Rule: if $\mathrm{y}=\mathrm{ax}{ }^{\mathrm{n}}$

$$
\text { then } d y / d x=n a x^{n-1}
$$

>Sum Rule: if $\mathrm{y}=\mathrm{u}+\mathrm{v}$ where y, u and v are functions of x then $d y / d x=d u / d x+d v / d x$

Rules of Differentiation

PFunction of a Function Rule or Chain Rule:

- If y is a function of u and u is a function of x,
- If $y=f(u)$ and $u=f(x)$,
- Then $d y / d x=d y / d u * d u / d x$
- We notice something here:
- y is not a direct function of x as we see in Power Rule and Sum Rule; rather
- y is a function of a variable, u; which in turn is a function of x

Rules of Differentiation

$>$ Product Rule: if $\mathrm{y}=\mathrm{u}^{*} \mathrm{v}$

- Where u and v are functions of x,
- then $d y / d x=u^{*}(d v / d x)+v^{*}(d u / d x)$
- As a pneumonic, we can say that:
- Assume $u=$ first and $v=$ second, then
- dee $y /$ dee $x=[$ first * (dee second/dee $x)+$ second * (dee first/dee x)]

So, in using the Product Rule,

- There must be a multiplication of terms or expressions which will result in a product (Product Rule)
- We have to always make sure that we have two terms (first term $=u$ and second term $=v$)
- If we do not have two terms, we have to chunk the number of terms that we have, into two terms
- Depending on the question, it may be necessary to use other rules in conjunction with the Product Rule

Can we do an example?

- Example 1: Find the derivative of
- $f(x)=\sin x \cos x$ using the product rule and simplify.
- Solution: $f(x)=\sin x \cos x=\sin x * \cos x$
- We have two terms: $\sin x=u=$ first term and

$$
\cos x=v=\text { second term }
$$

So, $u=\sin x ; d u / d x=\cos x$

$$
v=\cos x ; d v / d x=-\sin x
$$

Applying the Product Rule, we have

- $d y / d x=\left[\left(u^{*} d v / d x\right)+\left(v^{*} d u / d x\right)\right]$
- Thus, $d y / d x=\left[\left(\sin x^{*}-\sin x\right)+\left(\cos x^{*} \cos x\right)\right]$
- $d y / d x=-\sin ^{2} x+\cos ^{2} x$
- $d y / d x=\cos ^{2} x-\sin ^{2} x$
- This becomes our final answer.
- Please ask your questions.
- Ok, Let us move to another rule: the
- Quotient Rule

Rules of Differentiation

$>$ Quotient Rule: if $\mathrm{y}=\mathrm{u} / \mathrm{v}$

- Where y, u and v are functions of x,
- Then $d y / d x=\left[v^{*}(d u / d x)-u^{*}(d v / d x)\right] / v^{2}$
- As a pneumonic, we can say that:
- Assume $u=$ top, and $v=$ bottom; then
- dee y / dee $x=$
- [bottom * (dee top/dee x) top * (dee bottom/dee x)]
bottom squared

So in using the Quotient Rule,

- There must be a division of terms or expressions which will result in a quotient (Quotient Rule)
- Our numerator is always our top
- Our denominator is always the bottom
- Depending on the question, it may be necessary to use other rules in conjunction with the Quotient Rule

Can we do an example?

- Example 2: Find the derivative of
- $\mathrm{f}(\mathrm{x})=\frac{\sqrt{x}-1}{\sqrt{\mathrm{x}}+1}$
using the quotient rule and simplify.
Solution: $\operatorname{Top}=\mathrm{u}=\sqrt{ } \mathrm{x}-1 ; \mathrm{u}=\mathrm{x}^{1 / 2}-1$

$$
\begin{aligned}
& d u / d x=(1 / 2) * x^{1 / 2-1}-0[\text { Power and Sum Rules }] \\
& d u / d x=(1 / 2) x^{-1 / 2} \\
& d u / d x=\underline{1} \\
& 2 x^{1 / 2} \\
& d u / d x=\underline{1} \\
& 2 \sqrt{ } \mathrm{x}
\end{aligned}
$$

We are getting there...

- Bottom $=\mathrm{v}=\sqrt{ } \mathrm{x}+1 ; \mathrm{v}=\mathrm{x}^{1 / 2}+1$

$$
\begin{gathered}
\mathrm{dv} / \mathrm{dx}=(1 / 2) * \mathrm{x}^{1 / 2-1}+0 \\
\mathrm{dv} / \mathrm{dx}=(1 / 2) \mathrm{x}^{-1 / 2} \\
\mathrm{dv} / \mathrm{dx}=\underline{1} \\
2 \mathrm{x}^{1 / 2} \\
\mathrm{dv} / \mathrm{dx}=\underline{1} \\
2 \sqrt{\mathrm{x}}
\end{gathered}
$$

Bottom squared $=(\sqrt{x}+1)^{2}$

Applying the Quotient Rule, we now have

$$
\begin{aligned}
& \mathrm{dy} / \mathrm{dx}=(\sqrt{\mathrm{x}}+1) * \underline{1}-(\sqrt{\mathrm{x}}-1) * \underline{1} \\
& \frac{2 \sqrt{X} \quad 2 \sqrt{X}}{\left({ }^{x}+1\right)^{2}} \\
& \mathrm{dy} / \mathrm{dx}=\underline{V_{\mathrm{x}}}+\underline{1}-\underline{V_{\mathrm{x}}}+\underline{1} \\
& 2 \sqrt{x} 2 \sqrt{X} 2 \sqrt{x} 2 \sqrt{V}^{x} \\
& (\sqrt{x}+1)^{2}
\end{aligned}
$$

Step by step, we will get our answer

$$
\begin{aligned}
& \mathrm{dy} / \mathrm{dx}=\underline{1}+\underline{1}-\underline{1}+\underline{1} \\
& \underline{2 V_{X} 22 V_{x}} \\
& (\sqrt{x}+1)^{2} \\
& \mathrm{dy} / \mathrm{dx}=\underline{1}-\underline{1}+\underline{1}+\underline{1} \\
& 2 \quad 2 \quad 2 \sqrt{x} 2 \sqrt{x} \\
& (\sqrt{x}+1)^{2} \\
& \mathrm{dy} / \mathrm{dx}=\underline{2} \\
& \underline{2 \sqrt{x}} \\
& (\sqrt{x}+1)^{2}
\end{aligned}
$$

We are almost there...

$$
\begin{aligned}
& d y / d x=\underline{1} \\
& \underline{V_{\mathrm{X}}} \\
& (\sqrt{x}+1)^{2} \\
& d y / d x=\underline{1} \\
& \sqrt{ } \mathrm{x}(\sqrt{\mathrm{x}}+1)^{2} \\
& \mathrm{dy} / \mathrm{dx}=\underset{V_{\mathrm{x}}(\sqrt{\mathrm{~V}}+1)(\sqrt{\mathrm{x}}+1)}{ } \\
& \mathrm{dy} / \mathrm{dx}=\underline{1} \\
& \sqrt{ } \mathrm{x}\left(\mathrm{x}+2 \sqrt{x}^{\mathrm{x}}+1\right) \\
& =\quad \underset{x}{ } \quad \frac{1}{x}+2 x+\sqrt{x}
\end{aligned}
$$

Simplifying gives

$$
\begin{aligned}
& \mathrm{dy} / \mathrm{dx}=\frac{\underline{1}}{\sqrt{\mathrm{x}}(\mathrm{x}+1)+2 \mathrm{x}} \\
& \mathrm{dy} / \mathrm{dx}=\frac{1}{\sqrt{x}(\mathrm{x}+1)+2 \mathrm{x}} * \frac{\sqrt{\mathrm{x}}(\mathrm{x}+1)-2 \mathrm{x}}{\sqrt{\mathrm{x}}(\mathrm{x}+1)-2 \mathrm{x}} \\
& \mathrm{dy} / \mathrm{dx}=\frac{\sqrt{\mathrm{x}}(\mathrm{x}+1)-2 \mathrm{x}}{[\sqrt{\mathrm{x}}(\mathrm{x}+1)]^{2}-(2 \mathrm{x})^{2}} \\
& \mathrm{dy} / \mathrm{dx}=\frac{\sqrt{ }(\mathrm{x}(\mathrm{x}+1)-2 \mathrm{x}}{} \\
& \sqrt{\mathrm{x}(\mathrm{x}+1) * \sqrt{\mathrm{x}(\mathrm{x}+1)-4 \mathrm{x}^{2}}}
\end{aligned}
$$

Simplifying further gives

$$
\begin{gathered}
\mathrm{dy} / \mathrm{dx}=\underline{\sqrt{x}(\mathrm{x}+1)-2 \mathrm{x}} \\
\sqrt{\mathrm{x}} * \sqrt{\mathrm{x}} *(\mathrm{x}+1) *(\mathrm{x}+1)-4 \mathrm{x}^{2} \\
\mathrm{dy} / \mathrm{dx}=\underline{\sqrt{x}(\mathrm{x}+1)-2 \mathrm{x}} \\
\mathrm{x}(\mathrm{x}+1)^{2}-4 \mathrm{x}^{2} \\
\mathrm{dy} / \mathrm{dx}=\underline{\sqrt{x}(\mathrm{x}+1)-2 \mathrm{x}} \\
\mathrm{x}(\mathrm{x}+1)(\mathrm{x}+1)-4 \mathrm{x}^{2} \\
\mathrm{dy} / \mathrm{dx}=\underline{V_{\mathrm{x}}(\mathrm{x}+1)-2 \mathrm{x}} \\
\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}-4 \mathrm{x}^{2}
\end{gathered}
$$

And our final answer is

$$
\begin{aligned}
& d y / d x=\frac{V_{x}(x+1)-2 x}{x^{3}+2 x^{2}-4 x^{2}+x} \\
& d y / d x=\frac{\sqrt{x}(x+1)-2 x}{x^{3}-2 x^{2}+x} \\
& d y / d x=\frac{\sqrt{x}(x+1)-2 x}{x\left(x^{2}-2 x+1\right)}
\end{aligned}
$$

Thank you for the opportunity

- Please ask your questions.

