
AP Computer Science A
Scoring Guidelines

© 2017 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo
are registered trademarks of the College Board. Visit the College Board on the Web: www.collegeboard.org.

AP Central is the official online home for the AP Program: apcentral.collegeboard.org

2017

AP® COMPUTER SCIENCE A
2017 GENERAL SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Apply the question assessment rubric first, which always takes precedence. Penalty points can only be
deducted in a part of the question that has earned credit via the question rubric. No part of a question
(a, b, c) may have a negative point total. A given penalty can be assessed only once for a question, even if
it occurs multiple times or in multiple parts of that question. A maximum of 3 penalty points may be
assessed per question.

1-Point Penalty

v) Array/collection access confusion ([] get)

w) Extraneous code that causes side-effect (e.g., printing to output, incorrect precondition check)

x) Local variables used but none declared

y) Destruction of persistent data (e.g., changing value referenced by parameter)

z) Void method or constructor that returns a value

No Penalty

o Extraneous code with no side-effect (e.g., valid precondition check, no-op)

o Spelling/case discrepancies where there is no ambiguity*

o Local variable not declared provided other variables are declared in some part

o private or public qualifier on a local variable

o Missing public qualifier on class or constructor header

o Keyword used as an identifier

o Common mathematical symbols used for operators (× • ÷ < > <> ≠)

o [] vs. () vs. <>

o = instead of == and vice versa

o length/size confusion for array, String, List, or ArrayList; with or without ()

o Extraneous [] when referencing entire array

o [i,j] instead of [i][j]

o Extraneous size in array declaration, e.g., int[size] nums = new int[size];

o Missing ; where structure clearly conveys intent

o Missing { } where indentation clearly conveys intent

o Missing () on parameter-less method or constructor invocations

o Missing () around if or while conditions

*Spelling and case discrepancies for identifiers fall under the “No Penalty” category only if the correction
can be unambiguously inferred from context, for example, “ArayList” instead of “ArrayList.” As a
counterexample, note that if the code declares “int G=99, g=0;”, then uses “while (G < 10)”
instead of “while (g < 10)”, the context does not allow for the reader to assume the use of the lower
case variable.

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 1: Digits

Part (a) Digits constructor 5 points

Intent: Initialize instance variable using passed parameter

+1 Constructs digitList

+1 Identifies a digit in num

+1 Adds at least one identified digit to a list

+1 Adds all identified digits to a list (must be in context of a loop)

+1 On exit: digitList contains all and only digits of num in the correct order

Part (b) isStrictlyIncreasing 4 points

Intent: Determine whether or not elements in digitList are in increasing order

+1 Compares at least one identified consecutive pair of digitList elements

+1 Determines if a consecutive pair of digitList is out of order (must be in context of a
digitList traversal)

+1 Compares all necessary consecutive pairs of elements (no bounds errors)

+1 Returns true iff all consecutive pairs of elements are in order; returns false otherwise

Question-Specific Penalties

-2 (q) Uses confused identifier instead of digitList

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 1: Scoring Notes

Part (a) Digits constructor 5 points

Points Rubric Criteria Responses earn the point if they ... Responses will not earn the point if they ...

+1 Constructs
digitList

 ● initialize a local variable instead of
digitList

● create an ArrayList<int>

+1 Identifies a digit in
num

● identify one digit of num or a length
one substring/character of the
String representation of num

● treat num itself as a String
● convert num to a String

incorrectly

+1
Adds at least one
identified digit to a
list

● call add for some ArrayList
using the previously identified digit,
even if that digit was identified
incorrectly

● add String or char to
digitList without proper
conversion to the correct type

+1

Adds all identified
digits to a list
(must be in the
context of a loop)

● call add for some ArrayList
using previously identified digits,
even if those digits were identified
incorrectly

● identify only 1 digit

+1

On exit:
digitList
contains all and
only digits of num
in the correct order

● add to digitList even if it is not
instantiated properly

● obtain a list with the digits in reverse
order

● omit one or more digits
● add extra digits
● mishandle edge case, e.g., 0 or 10
● make a bounds error processing the

String representation of num

Part (b) isStrictlyIncreasing 4 points

Points Rubric Criteria Responses earn the point if they ... Responses will not earn the point if they ...

+1

Compares at least
one identified
consecutive pair of
digitList
elements

● compare two consecutive
Integers using compareTo

● explicitly convert two consecutive
Integers to ints and compare
those with >=, <= etc.

● use auto-unboxing to convert two
consecutive Integers to ints
and compare those with >=, <= etc.

● access digitList as an array or
string

● fail to call .get()
● compare using !>

+1

Determines if a
consecutive pair of
digitList is
out of order (must
be in context of a
digitList
traversal)

● determine the correct relationship
between the two compared
consecutive elements, even if the
syntax of the comparison is incorrect

● fail to consider the case where the
two elements are equal for the false
case

+1

Compares all
necessary
consecutive pairs
of elements (no
bounds errors)

 ● return early

+1

Returns true iff
all consecutive
pairs of elements
are in order;
returns false
otherwise

● compare consecutive pairs for
inequality, but fail to consider the
case when two elements are equal

● return prematurely via if (...)
return false; else return
true;

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2017 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 1: Digits

Part (a)

public Digits(int num)
{
 digitList = new ArrayList<Integer>();

 if (num == 0)
 {
 digitList.add(new Integer(0));
 }

 while (num > 0)
 {
 digitList.add(0, new Integer(num % 10));
 num /= 10;
 }
}

Part (b)

public boolean isStrictlyIncreasing()
{
 for (int i = 0; i < digitList.size()-1; i++)
 {
 if (digitList.get(i).intValue() >= digitList.get(i+1).intValue())
 {
 return false;
 }
 }
 return true;
}

Note: The solutions shown above were written in compliance with the AP Java subset methods listed for
Integer objects. Students were allowed to use the automatic "boxing" and "unboxing" of Integer
objects in their solutions, which eliminates the need to use "new Integer(...)" in part (a) and
"intValue()" in part (b).

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 2: MultPractice

Class: MultPractice 9 points

Intent: Define implementation of class to produce multiplication practice problems

+1 Declares header: public class MultPractice implements StudyPractice

+1 Declares all necessary private instance variables

+2 Constructor

 +1 Declares header: public MultPractice(int __, int __)

 +1 Initializes all instance variables using parameters

+3 getProblem method

 +1 Declares header: public String getProblem()

 +1 Builds string with current values of instance variables

 +1 Returns constructed string

+2 nextProblem method

 +1 Declares header: public void nextProblem()

 +1 Updates instance variable(s) to reflect incremented second number

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 2: Scoring Notes

Class MultPractice 9 points

Points Rubric Criteria Responses earn the point if they ... Responses will not earn the point if they ...

+1

Declares header:
public class
MultPractice
implements
StudyPractice

● omit keyword public ● declare class private

+1
Declares all necessary
private instance
variables

● declare the unchanging
instance variable as final

● declare variables as static
● omit keyword private

+2 Constructor

+1

Declares header:
public
MultPractice
(int ___, int ___)

● omit keyword public

+1
Initializes all instance
variables using
parameters

 ● fail to declare nonlocal variables
● initialize local variables instead of

instance variables
● assign variables to parameters

+3 getProblem method

+1
Declares header:
public String
getProblem()

 ● fail to declare method public

+1
Builds string with
current values of
instance variables

● write appropriate code in a
method other than
getProblem

● make capitalization or spacing
errors

● fail to declare nonlocal variables

● fail to use instance variables

● miscast (String) intVar

● call intVar.toString()

+1 Returns constructed
string

 ● return a literal string

+2 nextProblem method

+1
Declares header:
public void
nextProblem()

 ● fail to declare method public

+1

Updates instance
variable(s) to reflect
incremented second
number

 ● fail to declare non-local variables

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2017 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 2: MultPractice

public class MultPractice implements StudyPractice
{
 private int first;
 private int second;

 public MultPractice(int num1, int num2)
 {
 first = num1;
 second = num2;
 }

 public String getProblem()
 {
 return first + " TIMES " + second;
 }

 public void nextProblem()
 {
 second++;
 }
}

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3: PhraseEditor

Part (a) replaceNthOccurrence 5 points

Intent: Replace the nth occurrence of a given string with a given replacement

+1 Calls findNthOccurrence to find the index of the nth occurrence

+1 Preserves currentPhrase only if nth occurrence does not exist

+1 Identifies components of currentPhrase to retain (uses substring to extract before/after)

+1 Creates replacement string using identified components and repl

+1 Assigns replacement string to instance variable (currentPhrase)

Part (b) findLastOccurrence 4 points

Intent: Return the index of the last occurrence of a given string

+1 Calls findNthOccurrence to find the index of the nth occurrence

+1 Increments (or decrements) the value used as n when finding nth occurrence

+1 Returns the index of the last occurrence, if it exists

+1 Returns -1 only when no occurrences exist

Question-Specific Penalties

-1 (q) Uses currentPhrase.findNthOccurrence

-2 (r) Confused identifier instead of currentPhrase

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3: Scoring Notes

Part (a) replaceNthOccurrence 5 points

Points Rubric Criteria Responses earn the point if they ... Responses will not earn the point if they ...

+1

Calls
findNthOccurrence
to find the index of the
nth occurrence

● do not use the result of calling
findNthOccurrence

+1

Preserves
currentPhrase only
if nth occurrence does
not exist

 ● fail to use a conditional

+1

Identifies components of
currentPhrase to
retain (uses
substring to extract
before/after)

● identify start and end of substring
to be replaced

+1
Creates replacement
string using identified
components and repl

 ● create a replacement string that is out
of order

+1

Assigns replacement
string to instance
variable
(currentPhrase)

Part (b) findLastOccurrence 4 points

Points Rubric Criteria Responses earn the point if they ... Responses will not earn the point if they ...

+1

Calls
findNthOccurrence
to find the index of the
nth occurrence

● do not use the result of calling
findNthOccurrence

● return
currentPhrase.lastIndexOf(str);

● call findNthOccurrence with an
integer parameter of 0

+1

Increments (or
decrements) the value
used as n when finding
nth occurrence

● return
currentPhrase.lastIndexOf(str);

● advance through
currentPhrase searching for
nth occurrence of str

+1
Returns the index of the
last occurrence, if it
exists

● return
currentPhrase.lastIndexOf(str);

● compute the correct value to be
returned in all cases, but no return
statement exists for any case

● shorten string being searched
● always return in first iteration of the

loop

+1 Returns -1 only when no
occurrences exist

● return
currentPhrase.lastIndexOf(str);

● compute the correct value to be
returned in all cases, but no return
statement exists for any case

● always return in first iteration of the
loop

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2017 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 3: PhraseEditor

Part (a)

public void replaceNthOccurrence(String str, int n, String repl)
{
 int loc = findNthOccurrence(str, n);

 if (loc != -1)
 {
 currentPhrase = currentPhrase.substring(0, loc) + repl +
 currentPhrase.substring(loc + str.length());
 }
}

Part (b)

public int findLastOccurrence(String str)
{
 int n = 1;
 while (findNthOccurrence(str, n+1) != -1)
 {
 n++;
 }
 return findNthOccurrence(str, n);
}

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4: Successor Array

Part (a) findPosition 5 points

Intent: Find the position of a given integer in a 2D integer array

+1 Accesses all necessary elements of intArr (no bounds errors)

+1 Identifies intArr element equal to num (in context of an intArr traversal)

+1 Constructs Position object with same row and column as identified intArr element

+1 Selects constructed object when intArr element identified; null when not

+1 Returns selected value

Part (b) getSuccessorArray 4 points

Intent: Create a successor array based on a 2D integer array

+1 Creates 2D array of Position objects with same dimensions as intArr

+1 Assigns a value to a location in 2D successor array using a valid call to findPosition

+1 Determines the successor Position of an intArr element accessed by row and column
(in context of intArr traversal)

+1 Assigns all necessary locations in successor array with corresponding position object or null

(no bounds errors)

Question-Specific Penalties

-1 (s) Uses confused identifier Arr

-1 (t) Uses intArr[].length as the number of columns

-1 (u) Uses non-existent accessor methods from Position

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

© 2017 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4: Scoring Notes

Part (a) findPosition 5 points

Points Rubric Criteria Responses earn the point if they ... Responses will not earn the point if they ...

+1

Accesses all
necessary
elements of
intArr (no
bounds errors)

 ● use if (...) return;
else return null; inside loop

● confuse row and column bounds
● fail to traverse intArr

+1

Identifies intArr
element equal to
num (in context of
an intArr
traversal)

 ● use .equals instead of ==

+1

Constructs
Position object
with same row and
column as
identified intArr
element

 ● omit keyword new
● use (r,c) instead of

Position(r,c)

+1

Selects constructed
object when
intArr element
identified; null
when not

● use "null" instead of null
● construct a String object using

row and column indices

● use if (...) return;
else return null; inside loop

● use (r,c) instead of
Position(r,c)

+1 Returns selected
value

Part (b) getSuccessorArray 4 points

Points Rubric Criteria Responses earn the point if they ... Responses will not earn the point if they ...

+1

Creates 2D array of
Position objects
with same
dimensions as
intArr

 ● omit keyword new

+1

Assigns a value to a
location in 2D
successor array
using a valid call to
findPosition

● call
Successors.findPosition(…)

● reimplement the code from
findPosition

● call findPosition with a single
argument

● call this.findPosition(…)

+1

Determines the
successor
Position of an
intArr element
accessed by row
and column (in
context of intArr
traversal)

● reimplement the code from
findPosition

● call findPosition using an
integer that is not identified with a
location in intArr

● call findPosition with a single
argument

+1

Assigns all
necessary locations
in successor array
with corresponding
position object or
null (no bounds
errors)

● use SuccessorArray dimensions
correctly, even if SuccessorArray
was not initialized properly

● only assign non-null entries to
SuccessorArray

● reimplement the code from
findPosition but mishandle the
null case.

● fail to traverse intArr

Return is not assessed in Part (b).

AP® COMPUTER SCIENCE A
2017 SCORING GUIDELINES

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2017 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 4: Successor Array

Part (a)

public static Position findPosition(int num, int[][] intArr)
{
 for (int row=0; row < intArr.length; row++)
 {
 for (int col=0; col < intArr[0].length; col++)
 {
 if (intArr[row][col] == num)
 {
 return new Position(row, col);
 }
 }
 }
 return null;
}

Part (b)

public static Position[][] getSuccessorArray(int[][] intArr)
{
 Position[][] newArr = new Position[intArr.length][intArr[0].length];

 for (int row=0; row < intArr.length; row++)
 {
 for (int col=0; col < intArr[0].length; col++)
 {
 newArr[row][col] = findPosition(intArr[row][col]+1, intArr);
 }
 }
 return newArr;
}

	ap17_sg_cover_computer_science_a
	ap17_compsci_general_scoring_guidelines
	ap17_compsci_sg_q1
	Question 1: Digits

	ap17_compsci_q1_canonical
	Question 1: Digits

	ap17_compsci_sg_q2
	Question 2: MultPractice

	ap17_compsci_q2_canonical
	Question 2: MultPractice

	ap17_compsci_sg_q3
	Question 3: PhraseEditor

	ap17_compsci_q3_canonical
	Question 3: PhraseEditor

	ap17_compsci_sg_q4
	Question 4: Successor Array

	ap17_compsci_q4_canonical
	Question 4: Successor Array
	Part (b)

