

AP® Computer Science A
2011 Scoring Guidelines

The College Board

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the College Board is composed of more than 5,700 schools, colleges, universities and other
educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and
3,800 colleges through major programs and services in college readiness, college admission, guidance, assessment, financial aid
and enrollment. Among its widely recognized programs are the SAT®, the PSAT/NMSQT®, the Advanced Placement Program®

(AP®), SpringBoard® and ACCUPLACER®. The College Board is committed to the principles of excellence and equity, and that
commitment is embodied in all of its programs, services, activities and concerns.

© 2011 The College Board. College Board, ACCUPLACER, Advanced Placement Program, AP, AP Central, SAT, SpringBoard
and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service is a trademark owned by
the College Board. PSAT/NMSQT is a registered trademark of the College Board and National Merit Scholarship Corporation.
All other products and services may be trademarks of their respective owners. Permission to use copyrighted College Board
materials may be requested online at: www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

AP® COMPUTER SCIENCE A
2011 GENERAL SCORING GUIDELINES

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Apply the question-specific rubric first; the question-specific rubric always takes precedence.
Penalties: The penalty categorization below is for cases not covered by the question-specific rubric. Points can only be
deducted in a part of the question that has earned credit via the question-specific rubric, and no section may have a negative
point total. A given penalty can be assessed only once in a question, even if it occurs on different parts of that question. A
maximum of 3 penalty points may be assessed over the entire question.

Nonpenalized Errors Minor Errors (½ point) Major Errors (1 point)

spelling/case discrepancies if no
ambiguity*

local variable not declared if other
variables are declared in some part

use of keyword as identifier

[] vs. () vs. <>

= instead of == (and vice versa)

length/size confusion for array,
String, and ArrayList, with or
without ()

private qualifier on local variable

extraneous code with no side effect;
e.g., precondition check

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent and { } used elsewhere

default constructor called without
parens;
e.g., new Critter;

missing () on parameter-less method
call

missing () around if/while
conditions

missing ; when majority are present

missing public on class or
constructor header

extraneous [] when referencing entire
array

[i,j] instead of [i][j]

extraneous size in array declaration,
e.g., int[size] nums = new
int[size];

confused identifier (e.g., len for
length or left() for getLeft())

local variables used but none declared

missing new in constructor call

modifying a constant (final)

use of equals or compareTo
method on primitives, e.g., int x;
…x.equals(val)

array/collection access confusion
([] get)

assignment dyslexia,
e.g., x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean
values

"null" for null

extraneous code that causes side effect;
e.g., information written to output

interface or class name instead of
variable identifier; e.g., Bug.move()
instead of aBug.move()

aMethod(obj) instead of
obj.aMethod()

attempt to use private data or method
when not accessible

destruction of persistent data (e.g.,
changing value referenced by
parameter)

use of class name in place of super in
constructor or method call

void method (or constructor) returns a
value

* Spelling and case discrepancies for identifiers fall under the “nonpenalized” category only if the correction can be
unambiguously inferred from context; for example, “ArayList” instead of “ArrayList”. As a counterexample, note that if
a student declares “Bug bug;” then uses “Bug.move()” instead of “bug.move()”, the context does not allow for the
reader to assume the object instead of the class.

Applying Minor Penal ties
(½ point):
A minor infraction that occurs
exactly once when the same
concept is correct two or
more times is regarded as an
oversight and not penalized.
A minor penalty must be
assessed if the item is the
only instance, one of two,
or occurs two or more
times.

AP® COMPUTER SCIENCE A
2011 SCORING GUIDELINES

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 1: Sound

Part (a) limitAmplitude 4½ points

Intent: Change elements of samples that exceed ±limit; return number of changes made

 +3 Identify elements of samples to be modified and modify as required
 +1 Consider elements of samples
 +½ Accesses more than one element of samples
 +½ Accesses every element of samples (no bounds errors)
 +2 Identify and change elements of samples
 +½ Compares an element of samples with limit
 +½ Changes at least one element to limit or –limit
 +1 Changes all and only elements that exceed ±limit
 to limit or –limit appropriately

 +1½ Calculate and return number of changed elements of samples
 +1 Initializes and updates a counter to achieve correct number of changed samples
 +½ Returns value of an updated counter (requires array access)

Part (b) trimSilenceFromBeginning 4½ points

Intent: Remove leading elements of samples that have value of 0, potentially resulting in array
of different length

 +1½ Identify leading-zero-valued elements of samples
 +½ Accesses every leading-zero element of samples
 +½ Compares 0 and an element of samples
 +½ Compares 0 and multiple elements of samples

 +1 Create array of proper length
 +½ Determines correct number of elements to be in resulting array
 +½ Creates new array of determined length

 +2 Remove silence values from samples
 +½ Copies some values other than leading-zero values
 +1 Copies all and only values other than leading-zero values, preserving original order
 +½ Modifies instance variable samples to reference newly created array

Question-Specific Penalties
 –1 Array identifier confusion (e.g., value instead of samples)
 –½ Array/collection modifier confusion (e.g., using set)

AP® COMPUTER SCIENCE A
2011 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2011 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 1: Sound

Part (a):

public int limitAmplitude(int limit) {
 int numChanged = 0;
 for (int i = 0; i < this.samples.length; i++) {
 if (this.samples[i] < -limit) {
 this.samples[i] = -limit;
 numChanged++;
 }
 if (this.samples[i] > limit) {
 this.samples[i] = limit;
 numChanged++;
 }
 }
 return numChanged;
}

Part (b):

public void trimSilenceFromBeginning() {
 int i = 0;
 while (this.samples[i] == 0) {
 i++;
 }
 int[] newSamples = new int[this.samples.length - i];
 for (int j = 0; j < newSamples.length; j++) {
 newSamples[j] = this.samples[j+i];
 }
 this.samples = newSamples;
}

AP® COMPUTER SCIENCE A
2011 SCORING GUIDELINES

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 2: Attractive Critter (GridWorld)

Class: AttractiveCritter 9 points

Intent: Define extension to Critter class that relocates all other actors closer to itself

 +1 Properly formed class header for AttractiveCritter that extends Critter class

 +2½ Override Critter methods and maintain all postconditions
 +1 Overrides at least one method of Critter and satisfies all postconditions
 (point not awarded if also overrides act method)
 +½ Overrides getActors
 +1 Overrides processActors

 +5½ Move other actors in grid to be closer to self
 +1 Considers all other actors in grid
 +½ Checks for an empty movement destination
 +1½ Moves an actor
 +½ Moves at least one other actor to different location in grid
 +1 Moves another actor and guards against inappropriate self-movement
 +1½ Determines correct direction and location
 +½ Determines correct direction toward self for at least one other actor
 +1 Determines adjacent location to at least one other actor
 (point awarded only if calculated direction is used as parameter)
 +1 Moves all other actors to calculated destinations

Question-Specific Penalties

 –1 Inappropriate state change in world (Grid, Actor, …)

AP® COMPUTER SCIENCE A
2011 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2011 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 2: Attractive Critter (GridWorld)

public class AttractiveCritter extends Critter {

Solution that checks for self in getActors

 public ArrayList<Actor> getActors() {
 ArrayList<Actor> actors = new ArrayList<Actor>();
 for (Location loc : getGrid().getOccupiedLocations()) {
 if (!loc.equals(this.getLocation())) {
 actors.add(getGrid().get(loc));
 }
 }
 return actors;
 }

 public void processActors(ArrayList<Actor> actors) {
 for (Actor a : actors) {
 int direction =

(a.getLocation()).getDirectionToward(this.getLocation());
 Location newLoc = (a.getLocation()).getAdjacentLocation(direction);
 if (getGrid().get(newLoc) == null) {
 a.moveTo(newLoc);
 }
 }
 }
}

public class AttractiveCritter extends Critter {

Solution that checks for self in processActors

 public ArrayList<Actor> getActors() {
 ArrayList<Actor> actors = new ArrayList<Actor>();
 for (Location loc : getGrid().getOccupiedLocations()) {
 actors.add(getGrid().get(loc));
 }
 return actors;
 }

 public void processActors(ArrayList<Actor> actors) {
 for (Actor a : actors) {
 if (a != this) {
 int direction =

(a.getLocation()).getDirectionToward(this.getLocation());
 Location newLoc = (a.getLocation()).getAdjacentLocation(direction);
 if (getGrid().get(newLoc) == null) {
 a.moveTo(newLoc);
 }
 }
 }
 }
}

AP® COMPUTER SCIENCE A
2011 SCORING GUIDELINES

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 3: Fuel Depot

Part (a) nextTankToFill 5 points

Intent: Return index of tank with minimum level (<= threshold)

 +4 Determine minimum element of tanks that is <= threshold, if any
 +1½ Consider fuel levels of elements of tanks
 +½ Accesses fuel level of an element of tanks
 +½ Accesses at least one element of tanks in context of
 repetition (iteration/recursion)
 +½ Accesses every element of tanks at least once
 +2½ Identify minimum element of tanks that is <= threshold
 +½ Compares fuel levels from at least two elements of tanks
 +½ Implements algorithm to find minimum
 +½ Identifies tank (object or index) holding identified minimum
 +½ Compares threshold with fuel level from at least one element of tanks
 +½ Determines element identified as minimum fuel level that is also

<= threshold

 +1 Return the index of the element satisfying the conditions, or the current index if
 no element does so
 +½ Returns index of element identified as satisfying threshold & minimum conditions*
 +½ Returns filler.getCurrentIndex()when no element satisfies conditions*
 *Note: Point is not awarded if wrong data type is returned.

Part (b) moveToLocation 4 points

Intent: Move robot to given tank location

 +2 Ensure robot is pointing in direction of tank to be filled
 +½ Determines direction filler is currently facing
 +½ Changes filler’s direction for some condition
 +1 Establishes filler’s direction as appropriate for all conditions

 +2 Place robot at specified location
 +½ Invokes moveForward method with a parameter
 +½ Invokes moveForward method with a verified non-zero parameter
 +1 Invokes filler.moveForward method with a correctly computed parameter

AP® COMPUTER SCIENCE A
2011 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2011 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 3: Fuel Depot

Part (a):
public int nextTankToFill(int threshold) {
 int minLevel = this.tanks.get(0).getFuelLevel();
 int minTankIndex = 0;
 for (int i = 1; i < this.tanks.size(); i++) {
 if (this.tanks.get(i).getFuelLevel() < minLevel) {
 minLevel = this.tanks.get(i).getFuelLevel();
 minTankIndex = i;
 }
 }
 if (minLevel <= threshold) {
 return minTankIndex;
 } else {
 return this.filler.getCurrentIndex();
 }
}

// Alternative solution
public int nextTankToFillA(int threshold) {
 int minTankIndex = this.filler.getCurrentIndex();
 for (int i = 0; i < this.tanks.size(); i++) {
 if (this.tanks.get(i).getFuelLevel() <= threshold &&
 this.tanks.get(i).getFuelLevel() <
 this.tanks.get(minTankIndex).getFuelLevel()) {
 minTankIndex = i;
 }
 }
 return minTankIndex;
}

Part (b):
public void moveToLocation(int locIndex) {
 if (this.filler.getCurrentIndex() > locIndex) {
 if (this.filler.isFacingRight()) {
 this.filler.changeDirection();
 }
 this.filler.moveForward(this.filler.getCurrentIndex() - locIndex);
 }
 if (this.filler.getCurrentIndex() < locIndex) {
 if (!this.filler.isFacingRight()) {
 this.filler.changeDirection();
 }
 this.filler.moveForward(locIndex - this.filler.getCurrentIndex());
 }
}

AP® COMPUTER SCIENCE A
2011 SCORING GUIDELINES

© 2011 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

Question 4: Cipher

Part (a) fillBlock 3½ points

Intent: Fill letterBlock in row-major order from parameter; pad block or truncate string as
needed

 +½ Copies at least one substring from parameter to letterBlock
 +½ Completely fills letterBlock from parameter if possible

 (no bounds errors in letterBlock or parameter)
 +1 Results in a distribution of all consecutive one-character substrings from parameter

 to letterBlock (ignores surplus characters)
 +½ Copies these one-character substrings from parameter to letterBlock in such a
 way that the result is in row-major order
 +1 Pads letterBlock with "A" if and only if parameter is shorter than block size

Part (b) encryptMessage 5½ points

Intent: Return encrypted string created by repeatedly invoking fillBlock and
encryptBlock on substrings of parameter and concatenating the results

 +2 Partition parameter
 +½ Returns the empty string if the parameter is the empty string
 +½ Creates substrings of parameter that progress through the parameter
 string (can overlap or skip)
 +1 Processes every character in parameter exactly once (no bounds errors)

 +3 Fill and encrypt a block, concatenate results
 +½ Invokes fillBlock with parameter or substring of parameter
 +½ Invokes fillBlock on more than one substring of parameter
 +½ Invokes encryptBlock after each invocation of fillBlock
 +½ Concatenates encrypted substrings of parameter
 +1 Builds complete, encrypted message

 +½ Return resulting built string

Question-Specific Penalties

Wi –1½th Use of identifier with no apparent resemblance to letterBlock for two-dimensional
array

AP® COMPUTER SCIENCE A
2011 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2011 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 4: Cipher

Part (a):
private void fillBlock(String str) {
 int pos = 0;
 for (int r = 0; r < this.numRows; r++) {
 for (int c = 0; c < this.numCols; c++) {
 if (pos < str.length()) {
 this.letterBlock[r][c] = str.substring(pos, pos+1);
 pos++;
 } else {
 this.letterBlock[r][c] = "A";
 }
 }
 }
}

// Alternative solution
private void fillBlock(String str) {
 for (int r = 0; r < this.numRows; r++) {
 for (int c = 0; c < this.numCols; c++){
 if (str.length() > (c + (r * this.numCols))) {
 this.letterBlock[r][c] = str.substring(c + r * this.numCols,
 1 + c + r * this.numCols);
 } else {
 this.letterBlock[r][c] = "A";
 }
 }
 }
}

AP® COMPUTER SCIENCE A
2011 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2011 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

Question 4: Cipher (continued)

Part (b):
public String encryptMessage(String message) {
 String encryptedMessage = "";
 int chunkSize = this.numRows * this.numCols;
 while (message.length() > 0) {
 if (chunkSize > message.length()) {
 chunkSize = message.length();
 }
 fillBlock(message);
 encryptedMessage += encryptBlock();
 message = message.substring(chunkSize);
 }
 return encryptedMessage;
}

// Alternative solution
public String encryptMessage(String message) {
 if (message.length() == 0) return "";
 fillBlock(message);
 if (message.length() <= this.numRows * this.numCols) {
 return encryptBlock();
 }
 return (encryptBlock() +
 encryptMessage(message.substring(this.numRows * this.numCols)));
}

	AP® Computer Science A
	2011 Scoring Guidelines

	comp_sci_SGs_q1_final_to_ACC.pdf
	Question 1: Sound

	comp_sci_canonical solutions_q2_final_to_ACC.pdf
	Question 2: Attractive Critter (GridWorld)

	comp_sci_canonical solutions_q1_final_to_ACC.pdf
	Question 1: Sound

	comp_sci_canonical solutions_q3_final_to_ACC.pdf
	Question 3: Fuel Depot

	comp_sci_SGs_q4_final_to_ACC.pdf
	Question 4: Cipher

	comp_sci_canonical solutions_q4_final_to_ACC.pdf
	Question 4: Cipher
	Question 4: Cipher (continued)

